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A diffusion-type partial differential equation with non-linear coef- 
ficients is analysed for stability in the von Neumann sense, and some 
numerical examples are given. The equation is a kinetic equation 
representing an instantaneous injection of energetic photons into a 
thermalised cosmological background radiation (CBR) and the sub- 
sequent time evolution of the electromagnetic spectrum. Compton, 
double Compton, and bremsstrahlung are the only interactions con- 
sidered at the relatively photon energies low. The final conservative, 
implicit, finite difference scheme is a refinement of a similar model 
developed by Lightman, which is shown to be not stable for some cases 
considered. A semi-Lagrangian modification is used to account for the 
expansion of the universe. The full physical derivation of the kinetic 
equation and the associated parameters are given elsewhere. c 1992 

Academic Press. Inc. 
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1. INTRODUCTION 

Modelling of the Early Universe has enjoyed a lot of 
interest, particularly over last quarter of the century, when 
digital computers made it possible for us to numerically test 
the various scenarios. The period of the Early Universe 
following the primordial nucleosynthesis is of particular 
interest, because, it is thought during that period that the 
fluctuations in the initially homogeneous universe led to the 

formation of galaxies and stars. Some of the more conven- 
tional theories of galaxy formation require the presence of 
relatively massive neutral particles, that ultimately must 
decay, with a possible emission of electromagnetic radia- 
tion. The radiation emitted in such decays would lead to 
significant distortions in cosmological blackbody back- 
ground radiation. If such distortions are not to be present 
today, the emitted radiation must have been thermalised in 
the period between the time when this radiation was emitted 
and the recombination of hydrogen, when electromagnetic 
radiation finally decoupled from matter. 

In this paper we will not dwell in detail on the physics of 
the problem outlined above, as that is not the purpose of 
this article, and it is discussed in line detail elsewhere [6-71 
(see also references therein; Ref. [7] is henceforth referred 
to as GM). This paper is an expose of the details of the 
numerical implicit finite difference model developed by the 
authors, in order to derive the constraints on the distortions 
of electromagnetic background radiation spectrum in the 
Early Universe [6-71. The model assumes that the spec- 
trum is not strongly distorted as a result of various processes 
occurring at those early times. This last assumption may not 
be correct, if some recent results [S, 223 are confirmed. This 
possibility, however, does not affect the conclusions from 
the numerical analyses discussed below, and that is the 
purpose of the present paper. 

In the subsequent sections the finite difference 
approximations to the kinetic equation representing the 
interaction of radiation with electrons and protons are 
analysed in detail. Finite difference schemes are reviewed 
and applied to the physical model as presented in GM. 
Deficiencies of the various schemes are pointed out 
and alternative approaches offered. Stability in the 
von Neumann sense is investigated in order to predict the 
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behaviour of the various numerical solutions. The model 
suffers from only a very mild case of truncation error, which 
is well within the limit of the error in computation, but with 
some effort it may possibly also be removed, while a poten- 
tial instability in Lightman’s [ 141 scheme due to the non- 
linear term has been rectified successfully. The model is 
tested on a stable solution to confirm its consistency. 

2. DESCRIPTION OF THE PROBLEM 

The final form of the kinetic equation approximately 
representing the interaction of matter with electromagnetic 
radiation, also known as the Kompaneetz [ 123 equation 
with sources and sinks, is given by Eq. (2.0.1) (Eq. (4.16) of 
Ref. [6] or Eq. (3.1.10) of GM): 

=4 -2 +f(l+f) 
T. I 

+ $3G1.(1+CncC/1~. (2.0.1) 
T c 

Here f is the phase space density function of the photon 
background (or their spectrum), y is referred to as the 
optical depth and is the equivalent of the time component, 
while q is a dimensionless momentum magnitude and is the 
equivalent of the space component in the diffusion-like 
equation (2.0.1). In fact, the first term on the right-hand side 
of (2.0.1) represents the photon diffusion in momentum 
space [19], while the remaining two terms represent a 
source/sink for the photons. The remaining parameters are 
T, the temperature of the photon gas at a given value of y 
or time t, n, is the rest mass of the electron (we assume the 
nuclear units so that c = ti = k = I, where c is the speed of 
light in vacuum, fi is the Planck’s constant divided by 271 
and k is the Boltzmann’s constant). 

Equation (2.0.1) requires a number of subsidiary condi- 
tions and equations defining some of the other parameters. 
These are derived in GM and are only reproduced here for 
completeness. These are 

T(Y) = ToNA 

II/=lnb 

4”(Y) = J,(YoW,(Y) 

J,(L.)=J'* q3f(q, Y)4 
0 

(2.0.2) 

(2.0.3) 

(2.0.4) 

(2.05) 

dE. ‘-43 3Hm 
dy= aTneT 4 

(4/3)(P,)olA3 + (P,)ol12 
4(P,)olA4 + 2(P,)ol13 

(2.0.6) 

fp’ 87CGN 
3 C(Pr)olA3 + (P,)ol~*21, (2.0.7) 

where the subscript 0 means that the quantity is taken at 
some initial time t = to when i = 4 = 1 and y = 0, and for 
completeness, the expression for time is given by 

t(Y) = to + ~ (,mfo To J; ~4(~‘Y4(~‘) dy’ (2.0.8) 
T L’ 

The problem therefore, is to find a time dependent 
solution of (2.0.1) with additional equations (2.0.2 )-( 2.0.7) 
describing a set of additional parameters. Note that if C, 
and C,, vanish in (2.0.1), then only Eqs. (2.0.3)-(2.0.5) are 
required and 1 need not be evaluated, unless the expression 
for time t is required. 

Equation (2.0.1) is a second-order partial differential 
equation in the spatial coordinate q and first order in the 
temporal coordinate y. In addition the problem has non- 
linear coefficients. Mathematically, this type of differential 
equation falls in the general category ofparabolicpartial dif- 
ferential equations, of which the heat and diffusion equation 
are special cases. It turns out that the Kompaneetz equation 
part of Eq. (2.0.1); i.e., excluding the last two terms, under 
certain assumed circumstances has simple, analytical, diffu- 
sion equation type solutions [ 10, 12, 191. 

The approximations applied by Kompaneetz [12], 
Illarionov and Sunyaev [lo], and Silk and Stebbins [ 191 
all assume f (q, y) 4 1, so that the coefficients of the 
Kompaneetz equation are linear in f: Under these cir- 
cumstances, Kompaneetz showed that the photon spectrum 
approaches the equilibrium at least as fast as ep2’. 
Illarionov and Sunyaev [lo] and Silk and Stebbins [19] 
considered small deviations from the Planck spectrum, 
and for q $1 their results agree with those of Kompaneetz 
(the Wien limit), while for q B 1 it behaves like a growing 
disturbance which moves to the lower frequencies. 

When the problem is solved numerically, these 
approximations are not necessary, but the results obtained 
using these approximations can be compared with the 
numerical results in the regions where the approximation 
conditions are satisfied. Therefore the aim is to numerically 
investigate the behaviour of the Kompaneetz equation with 
modifications allowing for the expanding universe scenario 
and, also, the behaviour of this equation when either or 
both of the entropy generating terms such as brems- 
strahlung and double Compton terms are included. 

The PDE (2.0.1) is of a fairly general format, but a 
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number of features may be identified, and these are helpful 
in formulating a satisfactory difference scheme for solving 
the problem in a fairly general case. 

First, the left-hand side of (2.0.1) is basically a form of a 
wave equation in the (y, In q) space. Second, the first right- 
hand term of (2.0.1) (if we ignore the (1 + f) factor, may be 
transformed into a more conventional diffusion format 
in Inq space [19]. Third, the last term of (2.0.1) is a 
source/sink term. 

The difference scheme that solves (2.0.1), without the 
source/sink term, must conserve both d3J, and #4J, 
(defined by Eqs. (2.0.4), (2.0.5), and (3.4.7)) proportional to 
the photon number and the photon energy of the universe. 
This suggests that a conservative scheme should be used for 
this part of the equation, with possibly some special care 
taken with the non-linear factorf( 1 + f). The wave compo- 
nent may be handled using a Lagrangian approach by 
replacing the left-hand side of (2.0.1) with a full drivative 
with respect to some variable y’ = y - c,’ In q. 

In the following section we describe difference schemes 
which may be used for the solution of (2.0.1), construct the 
conservative difference scheme, and discuss its implementa- 
tion. 

3. NUMERICAL TECHNIQUES 

Methods of solving differential equations of various types 
have been studied extensively in the past, even before these 
methods could be applied in practical cases as a result of 
improved access to large scale computing. The techniques of 
analysis of various types of differential equations may be 
found in a range of texts [9, 11, 15-171. Despite extensive 
work done in this area, it soon becomes clear that there are 
no universal methods of solving partial differential equa- 
tions, and some insight into the problem and properties of 
the function(s) investigated is necessary, when the coef- 
ficients are not simple, and in particular, if there are non- 
linear terms involved. 

The problem requiring the numerical solution of the 
kinetic equation (2.0.1) is an initial value-boundary condi- 
tion problem, and the numerical solution forms a time series, 
so the problem will be analysed in terms of finite difference 
schemes which appear to be the most appropriate in this 
case. This is only one of several major classes of approaches 
to solving partial differential equations numerically; other 
techniques include finite element analysis and spectral 
techniques. 

Spectral analysis techniques effectively involve obtaining 
the solution of the equivalent transform problem, e.g., 
obtaining the solution of the Fourier transform of the 
original differential equation. Advances in algorithms used 
in calculations of Fourier transforms, i.e., the fast Fourier 
transform techniques, or the FFTs [18], make these 
techniques particularly useful, but other transforms may 
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be more suited to solving any given problem. Spectral 
techniques, under certain circumstances, are more efficient 
and more accurate than the finite difference techniques, but 
this need not be true in general [S]. Accuracy and efficiency 
of the procedures is usually dependent on the application of 
the appropriate set of characteristic functions. 

For our problem it is necessary to know the phase space 
density function f(q, y) at various intermediate stages in 
order to solve the ordinary differential equation obtained 
from the equation for entropy 

s=; CP+Pl,,t (3.0.1) 

(see Ref. [21, p. 533]), where S is the entropy to within an 
additive constant, R is a distance scale, P is the gas pressure, 
and p is the energy density. Consequently, under these 
circumstances, spectral techniques are neither practical nor 
efficient. It therefore becomes clear that the most practical 
approach to the problem is using some finite difference 
scheme (provided it works), and this will be discussed in the 
next section. In fact, obtaining the correct finite difference 
scheme is one of the most important elements in the process 
of numerically solving a partial differential equation, and 
this point will be demonstrated here in the case of the 
Kompaneetz equation. 

3.1. Finite Difference Schemes 

The formulation of a finite difference scheme essentially 
consists of applying the Taylor expansion series in some 
form, to approximate the derivatives in the partial 
differential equation, e.g., by expanding f(q + 4, Y) 
andf(q, Y + AY). 

Let us first define a notation convention where the super- 
script refers to the temporal variable y and the subscript 
refers to the spatial variable q; then F(q,+m dq, 
y, + n dy) = I;;, y, and q. are some reference values of y 
and q, respectively. Since we are dealing with an initial value 
problem, all points with superscript 0 are known at any 
given iteration, so the aim is to develop and solve an expres- 
sion for the value of the function at the next time step. 

Let us now consider a general parabolic partial differen- 
tial equation with variable coefficients 

f=acf+bLf+cf, 
ay 892 aq 

(3.1.1) 

where a, 6, and c are functions of y and q. We now wish to 
write down an approximation to (3.1.1). The most general 
estimate for the derivative df/ay, somewhere in the 
range (y, y + dy), would be some linear contribution of 
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derivatives calculated at time level 0 and 1. Thus the 
difference equation may easily be shown to have the form 

( 
1 

- 
a (J&+2 dq 

6:, fi+ ac;;q;y:+lJf: 
> ( 
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+u 
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(As)2 dy f: 

> 

+ O(‘4y) + O(dq2). (3.1.2) 

This is of the form 

(3.1.3) 

where the d’s here are just the coefficients of the function at 
an appropriate grid point at time t + d t (i.e., the superscript 
1 is implied). It is now required to solve Eq. (3.1.3) forf’. 
The a = 0 case is an explicit form of the difference equation 
commonly referred to as forward in time and centered in 
space (FTCS), whereas setting a = 1 results in an implicit 
scheme. In both of these schemes, the accuracy is of the 
order dy in the temporal variable and (dq)2 in the spatial 
variable. In case of a = i, the scheme (3.1.2) is accurate to 
(dy)‘. This may be shown by expanding the Taylor series 
about the point (q + 4 dq, y + f dy) and could be referred to 
as centered in time and centered in space, but it is more 
commonly known as the Crank-Nicholson scheme and is 
also implicit. The results obtained using the implicit and the 
Crank-Nicholson type scheme in the case of a version of the 
Kompaneetz equation will be presented later, following 
the stability analysis of the scheme (3.1.2). We mention 
here in passing that a further modification of Eq. (3.1.2) is 
possible in order to achieve the accuracy of order (dq)4, but 
as will soon become obvious, this is not of primary concern 
in view of the stability considerations, so it will not be dis- 
cussed here in detail.’ This covers the set of general schemes 
involving two time levels [16, pp. 189-1911, but there still 
exists another class of such schemes involving more than 
two time levels. These will not be discussed here also since, 
as it turns out, they complicate the system unnecessarily. 
Richtmyer and Morton discuss and present algorithms for 
a wide range of such schemes in the case of a simple heat or 

diffusion equation, Eq. (3.1.1) with b = c = 0. In the general 
case a number of schemes or variations may be developed 
for the purpose of accommodating the variability of these 
coefficients. 

A very general and systematic method of developing 
difference schemes to the accuracy of an arbitrary order in 
the spatial part, may be obtained by the method of Padt 
approximants (see, e.g., Ref. [4, p. 2571). In this technique, 
the spatial part of Eq. (3.1.1) is replaced by the lowest order 
difference scheme approximation (3.1.2), ignoring the time 
level for now. This results in a matrix expression of the form 

(3.1.4) 

where f is the vector of the spatial function values and c is 
a tri-diagonal matrix approximating the spatial derivative. 
For small time intervals dy, the solution to this is 

f(y+dy)=e-“-y(y). (3.1.5) 

The idea now is to approximate the exponential function by 
the Pade approximant 

rm,,(u) = CqAu)lpl P,(u)~ 

where pm and qn are polynomials in u of degree m and n, 
respectively, in the matrix u = c dy, so that (3.15) becomes 

f(.Y+4Y)=qP(~‘dy) P&wfW (3.1.6) 

In the case m = n = 1 the polynomials arep = 1 - u/2 and 
q(;Liel + u/2, which gives the Crank-Nicholson type 

3.2. Stability Considerations 

Stability analysis of finite difference equations is often a 
difficult procedure due to the fact that in order to find the 
analytical solution of the difference equation it is necessary 
to solve a partial differential equation of higher order than 
the original one. 

There are a number of techniques of estimating the 
stability of the difference equation approximation. One of 
them consists of investigating the evolution of some error 
quantity an = f” - f *“, where f” is the calculated value, 
whilef” is the exact solution of the difference equation time 
series. The problem is stable if a”+‘/~” --+ 0 as n + co, or, 
alternatively, l~“+i/a~i < 1. In addition, if &“+‘/a” 2 0 for all 
n, then no overshoot occurs in the solution (i.e., the solution 
will not oscillate ). 

One of the most popular stability analysis techniques is 
’ See Ref. [ 161 for the procedure of obtaining higher order corrections that due to uon Neumann, originally developed around 

to various rypes of partial differential equations. 1944, but formally first published by Crank and Nicholson 



[3] and later by von Neumann and Richtmyer [20]. The 
aim of this technique is to evaluate the amplification factor 
G (for some wavelength associated with the grid spacing), 
where 
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where /I is some small arbitrary number, approximately 
q&Au, as discussed further below and u is the new spatial 
variable. In addition, substituting for f 

f =Flq2, (3.3.2) 

we obtain 

aF 4 
( > 

* d2F -= - 
ay q+/? au2 

V nC1,Gf.P (3.2.1) 

and V” is the magnitude of some spectral component at 
time level IZ. Now each solution component ct may be 
written in the form 

,Y:, = yneimk 4 (3.2.2) 

where k is the smallest wavenumber associated with the grid 
and the extent has been normalised to qmax = 1 [ 171. If we 
now let 

O=kAq (3.2.3) 

then (3.2.2) becomes 

(; = vneime (3.2.4) 

If the number of grid points in the spatial part of the grid is 
M, then 

+2(q-I-z)F (3.3.3) 

which becomes the new equation to be analysed, and it is 
this equation, one hopes, that the difference equation will 
represent. 

3.4. Stability of the Approximation 

We now compare Eq. (3.3.3) with (3.1.1) and obtain 

(3.4.la) 

8 max = n. (3.2.5b) 

notethata+Oasq-+Oanda+lasq+Co,’ 
(3.2.5a) 

b= q--$+2F/q+$) (3.4.lb) 

and 

(3.4.lc) 
Substitution from (3.2.4) into the difference equation 

results in the amplification factor G (Eq. (3.2.1)). This may 
then be analysed for stability, which requires that 1 GI < 1 for 
all possible values of 8. We shall apply this technique, in the 
remainder of this paper, to analyse the stability of the 
various numerical approaches. 

3.3. Metric Transformation 

In the Kompaneetz equation the coefficient a=q2 
indicates a possible singularity in f at the origin. Further- 
more, at the origin q*f = 0 forms the boundary condition 
from the particle flux considerations [12] and the 
behaviour of the function near the origin is of major interest 
because of the level of permissible distortion in the phase 
space density functionJ: This means that f should be con- 
sidered on a logarithmic scale, at least at the lower end of 
the spectrum. At that end, however, the boundary condition 
is rather awkward to implement on a logarithmic scale 
[ 141, so in order to avoid such difficulties, a metric transfor- 
mation is applied to the spatial domain 

Assuming that d$/dy is a slowly varying function of y, we 
substitute Eqs. (3.4.1 I into the amnlilication factor equation 
for G (3.2.1)Bnd obtain . 

G=l-(l-a)(A-iB) 
1 +a(A-iB) ’ 

(3.4.2) 

where 

2y2sin2kB-I+q-2 
4 

‘=(q+;) Au’ 

a=B(e”- 1). _ .~ ,_ ~ I points occur in the region where q < 8. (3.3.1) 
’ The potential problem near q = 0 may not be too serious if only a few 

(3.4.3a) 

(3.4.3b) 

(3.4.3c) 
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The quantities A, B, and y are all real, so that in the case 
c( = f the condition IGI < 1 is satisfied by the requirement 
A 2 0. This case is important because when this condition is 
satisfied, the difference equation approximation error is 
o(dy)’ rather than O(dy). This scheme is likely to have 
some problems when dt,b/dy > - 1 and q is small, since 
y2 sin2 40 cannot be guaranteed to be large enough so that 
A > 0 at all times. This in fact may be observed in the 
estimated value of d$/dy at each step, which tends to over- 
shoot somewhat when it is significantly greater than zero, 
although it still converges in the end despite this problem, 
when its value drops sufficiently low. 

Let us now examine the coefficients of the difference 
equation (3.1.3) in the case of Kompaneetz equation. Here 

form a tri-diagonal system of the form 

df =e, 

(3.4.4a) 

(3.4.4b) 

(3.4.4c) 

(3.4.5) 

where d is an Mx M matrix with only super-diagonal, 
diagonal, and sub-diagonal elements non-zero, while f and 
e are vectors with M components each. The advantage of 
such a scheme is that the solution time only grows linearly 
with M as opposed to approximately M* in the case of 
inverting an M x M matrix. The round off errors (see Ref. 
[ 17, Appendix A]) for such a scheme will be kept low, 
provided 

dL,+d,<d,, (3.4.6) 

where dp 1, d,, and d, > 0. It is quite obvious from Eqs. 
(3.4.4) that the condition (3.4.6) is not automatically 
satisfied. In fact, large d$/dy again could lead to problems, 
but this time just the fact that it is large in amplitude could 
force the coefficients d, and dL, to change sign and also 
violate the condition (3.4.6). To avoid this problem it is 
necessary to keep du small. In practice it turns out that the 
condition (3.4.6) is sufficient but need not be satisfied 
everywhere for the system to be stable. In fact it turns out 
that di need not be all positive, provided d,, is largest in 

magnitude and the condition (3.4.6) is satisfied. It will be 
shown later that the system is stable if we remove the factor 
l/dy from d,, and condition (3.4.6) is satisfied with d, 
dominating (i.e., it is larger in magnitude than either of) the 
other coefficients. In other words, one of d, and d-, may 
become negative, provided it is not large in magnitude. To 
ensure diagonal domination in (3.4.4), it is also necessary to 
keep dy sufficiently small to compensate for a large negative 
d$/dy. In fact it is clear that the round-off errors will not be 
contained for small q, since there the coefficient of (d~))~ 
becomes very small, resulting in condition (3.4.6) being 
satisfied only provided that dy is very small. It should be 
noted that q in Eqs. (3.4.4a))( 3.4.4b) may cause problems as 
well, since it has large values at the upper end of its domain, 
so that it may dominate (3.4.4). In fact this does happen 
when the initial spectrum is strongly distorted in that 
region. One way of getting around this problem is to 
make du very small indeed, but this has the disadvantage 
of leading to an unacceptable large value of M, the size 
of the tri-diagonal matrix. Another alternative is to use 
a somewhat different metric transformation in place of 
Eq. (3.3.1). An appropriate metric would be one that does 
not compress the region of large q as strongly as the log 
function, so that the grid interval in terms of q is smaller in 
the region in question. A third alternative is to use the idea 
proposed by Lightman [ 141, where the domain of q is 
divided into two or more regions with different values of du. 
In this case arbitrary decisions must be made to decide on 
the resolution and number of intervals to be used. Clearly 
the former procedure is more systematic, provided a 
suitable transformation that does not result in undue com- 
plications may be found, but either will work if applied 
correctly. 

The difference equation “representing” the Kompaneetz 
equation is solved numerically without the additional 
modifications mentioned above, for several values of M (or 
du) and for variable and constant (small) dy attempting to 
keep the problems mentioned above to a minimum. The 
result of these calculations, for the case of c( = i, is shown in 
Fig. 1. The plot of the dimensionless chemical potential 
(t,,,) is quite enlightening here. Physically, the phase space 
density function tends to the equilibrium and, because the 
number of particles is conserved, this quantity, which is 
calculated from the expected equilibrium spectrum, should 
remain fixed during the calculations. This clearly is not so 
in Fig. 1, and so it demonstrates the departures of the 
difference equation solutions from the solutions of the 
differential equation (see Ref. [ 16, Section 1.6). It may be 
immediately verified that this departure or drif away from 
the expected value is of the order (AU)* by comparing the 
slopes of the M = 500 and A4 = 2000 and OL = 1, 4 curves [6]. 
It is also clear that the error is O(dy), since the effect due to 
varying dy is very small when comparing with the fixed dy 
case. Clearly this is the fundamental problem here and 
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FIG. 1. Sample results for the non-conservative model of the Kom- 
paneetz equation in the context of expanding universe equations (3.1.2) 
and (3.3.2) of GM, described in this paper for a Crank-Nicholson type 
scheme (a = i), keeping the temporal variable increments fixed. The physi- 
cal model parameters for all the figures, unless otherwise specified, are 
tnn = 1 .O MeV, mL = 0 eV, the decay temperature To = 1 KeV, branching 
ratio for electromagnetic decays B = 0, ‘I= lo-“, the number of light 
neutrino species N, = 2, and the number of heavy neutrino species N, = I. 
The assymptotic value of the chemical potential of radiation 4,,, is given as 
a function of optical depth y evaluated by solving the equations 

at each iteration step. 

consequently this approach is unsatisfactory. It is therefore 
necessary to find an alternative approach by identifying the 
root of the problem in the original difference equation, if 
reasonable results are to be obtained. 

A brief analysis of the situation shows that this drift is 
occurring while d$/dy is nearly zero. Furthermore, it is 
noted that the photon number densityenergy density 
relationships indicate that either energy density or photon 
number density or both are not conserved during the 
calculations. Mathematically, if we define moments of the 
phase space density function f to be 

J, = jam fit 4, (3.4.7) 

then d4J, is proportional to the total energy of the universe 
and is time independent (see Eq. (3.1.3) of GM). This may 
be derived from of the modified Kompaneetz equation 
Df = C,[f]. Clearly something has gone wrong while 

formulating the difference equation, and a new approach 
needs to be found. 

It may also be appropriate to mention here that schemes 
of a similar type, but higher order than that used above, 
tend to be less stable than the above scheme and conse- 
quently were rejected following a brief evaluation of several 
cases. In any case, even if a stable scheme was found, it is 
unlikely that the drift in particle numbers would be reduced 
sufficiently to make the scheme consistent. 

3.5. A Conservative Scheme Approach 

As has been noted, a brute strength approach does not 
guarantee success, so in order to achieve the expected con- 
servative behaviour, it is essential to build the difference 
equation with this consideration in mind. The general 
technique of obtaining conservative differencing schemes in 
multidimensional systems has been described by Arakawa 
and Mintz [ 11, including the simple argument to follow, 
that applies in the one-dimensional case discussed here. It 
should be noted, however, that it does not automatically 
guarantee an accurate solution (see, e.g., Ref. [ 1, Example 
3-3, p. 368]), hence consideration of the former approach 
may be justified. 

First, it is necessary to define the conserved quantity. In 
fact there are two conservation requirements. The first one 
is due to conservation of energy and requires that the third 
moment of Eq. (2.0.1) vanish (i.e., the total energy of the 
system is invariant) and that the second conserved quantity 
relates to the number of photons. This second quantity is 
only conserved in entropy conserving single Compton colli- 
sions requiring that the second moment of the Kompaneetz 
term of Eq. (2.0.1) vanish. 

To establish a conservative difference scheme it has to be 
set up in some control region as a difference of a function at 
the boundaries [ 1 ] 

%=A -A 
& ’ 

n-l 

so that 

(3.5.1) 

(3.52) 

and therefore dX/dy depends purely on the boundary condi- 
tions of function A. If these vanish then the quantity X is 
conserved numerically. The question now becomes: what 
are these quantities xn and A,? In the context of flow of 
some quantity p we may look at x,, as the amount of p 
within the region bounded by points u - Au/2 and u + AU/~, 
while A,, _ i and A, may be considered as the flux of p in and 
out of the region at the boundaries [ 171. Ideally we would 
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like the quantity p to be the energy and x,, to be the energy 
density of particles with momentum in the range corre- 
sponding to the interval defined above; unfortunately 
Eq. (2.0.1) is not easily transformed into the appropriate 
form. The other alternative is to try to conserve the photon 
number, where it should be conserved, hoping that it will 
bring the error down to a reasonable level, and later try to 
refine the scheme to improve the accuracy even further. 

A brief examination of the Kompaneetz equation 
indicates that it is already in the form required by (3.51) 
because of the method of derivation. Therefore the quan- 
tities required, ignoring the entropy generating terms 
initially, may be defined as 

+ Fn + ,/Ad + 1,2 + Fn + 1,2), (3.5.8b) 

E n- 112 = 44- ,,2 
n-112 

+ Fn ~ ,,2(d ~ ,,2 + J’t, ~ 1,2L (3.5.8~) 

=F,+Jd+,--F,,:d 
Au 

(3.5.8d) 
n+ l/2 

X” = 

this gives the function A as 

A(q) = q4 i $+fU +f) 1 (3.54) 

The integral over the region [qn - $ Aq, qn + 4 Aq] of the 
left-hand side of Eq. (2.0.1) is approximated by 

af-ttiq~ q’dq 
ay 3 4 a4 

=[~(q~f~)--qy:(~)~](~)~Au (3.55) 

and the integral of the entropy generating terms by 

I 
%I+ l/2 
y 
n 
~ ,,2 K(q)Cl - (e” - l)f1 q2 4 

= Nq,)Cl - (eqn- l)fJ d Au, (3.5.6) 
” 

where the derivative (af/aq), is approximated by 

(3.5.7) 

If we now also set f = F/q’, so that the new function F has 
a boundary condition zero at the origin, then the conser- 
vative part becomes 

s u,+Au/2 d 
u,-Au/2 dqq 

FJd-Fn-Jq;:-, 
AU 

(3.5.8e) 

F n + 112 = (F,;, + I + FJP> (3.5.8f) 

F n ~ 112 = (Fn + Fn - I I/2. (3.5.88) 

Assembling everything together, the expression obtained is 

+ Fn ~- ,p(d ~ ,,2 + F, ~ 1,2) 

and (dq/du), is obtained by differentiating the metric 
transformation, e.g., Eq. (3.3.1). Dividing (3.5.9) by Aq,= 
(dq/du), Au and collecting coefficients of the F,, this 
becomes3 

aF 
--r=anFn~l+b,F,,+c,F,,+,+d, 
ay 

(3.5.10a) 

and 

dti d -- 
4 2q:- 112 

2 
qn-,,z+Fn-I,2 - 

2Au 1 
(3.5.10b) 

= En + 112 - En ~ 112 2 

3 This scheme is very similar to that of Lightman (Ref. [ 14]), except that 
he considered the system interacting with electrons at fixed temperature so 
it could be assumed that d$/dy = 0. This expression was, however, derived 
independently before he communicated his scheme to us. (3.5.8a) 
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d + ,,hWdq)n + 112 + 4: - ,,bWdq)n - 112 

q%N2 

+ (4; + l/2 + Fn + l/2 )-(q:-,,z+f’-~2) 

2Au 1 
- K(9,)(eY” - 1) (3.5.1Oc) 

n+ l/2 

(3.5.10d) 

4 = qtrJhJ (3.5.10e) 

Note that in this scheme the value of dt,h/dy is used explicitly. 
Ideally this should be obtained by solving the system 
(3.5.10) simultaneously with the expression for conservation 
of energy 

+Wld+,,,- llq~-,,,)-F,~1/q;:~,,zl ~0, 1 
(3.5.11) 

Unfortunately the insertion of Eq. (3.5.11) into the system 
(3.5.10) destroys its tri-diagonal property and, as a result, 
would lead to a very large increase in amount of computa- 
tion required to solve it. It also turns out that Eq. (3.5.11) 
cannot be solved by simultaneously reducing it, while the 
tri-diagonal system is being solved, because numerically 
accurate solution requires pivoting about the dominant 
term of each column, and this requirement is then not 
satisfied. This means that the calculations must be based on 
a value of d$/dy, estimated using some other procedure. 

Equation (3.5.10) may now be set up in the form of the 
Crank-Nicholson type scheme, with the coefficients a, b, c, 
and d common to both time levels, so that the expression 
may be written from (3.5.10a) as 

where a, 6, c, and d are the coefficients a,,, b,, c,, and d, 
of Eq. (3.5.12). When d= 0, the expression (3.5.13) satisfies 
the von Neumann stability criterion, mentioned earlier, 
for a > f, provided the condition -b + la + cl 3 0; i.e., 
a+b+c<Oanda-b+c>Oaresatislied.Now 

+ (sf, ,,2 + Fn+ ,,A - (6 ,/z-F,- 1,~) 

+(q:.l/2(~)n+l~~$--$) 

(3.5.14a) 

and 

a-b+c=($)n(9Z+li2 (z)n+l,2 (&+$) 

and, since q is a monotonically increasing function of u, then 
du/dq > 0, so that clearly the stability condition is not 
automatically satisfied, and the problem becomes worse the 
more negative d$/dy becomes. 

The second difficulty with the scheme (3.5.9) is that it 
includes terms of the type q;‘, which need to be treated 
specially on the lower end boundary, since q, = 0 there. This 
problem may be avoided by varying the scheme somewhat, 
so that instead of differentiating (af/aq) = 8(F/q2)/iJq as a 
whole, we expand it, inside the Kompaneetz term only, to 
give 

Fi+I-Fl 
n 

AY 

“=~~(a,Ff,“‘,+b,Fh+~+c,F~+‘,)+(l-cc) 

x(a,F~_,+b,F~+c,F~+,)+d,. (3.5.12) 

($)=-$(g-Wq’ (3.5.15) 

The stability of this scheme is quaranteed, provided IGI < 1, and at the same time we may also integrate the second term 

where, using the von Neumann analysis technique, as of (3.5.5) by parts to give 

before, 

G= 

l/Ay + d+ (CI - 1)[2(a + c) sin2 $0 
- (a + b + c) + i(a - c) sin 01 

l/Ay + ol[2(a + c) sin2 $0- (a + b + c)’ 
(3.5.13) ~,+A42 dq 

+ i(a - c) sin 01 
= (@I, + 1/2 - (qF)n - 1/2 

- 3 1.p Au,2 
F- du (3.5.16) 

du 
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and, consequently, the scheme (35.10) may be rewritten as then the second term will be negative for qn < 1 and positive 
for qn > 1; however, if the function F takes values close to 
unity in the region qn < 1 then the difference of the non- 
linear terms F,, + 1,2 - Fx ~ 1,2 = (F,, + , - F,, ~ 1 )/2 will, in 

2 
4, ~ 1/2 - 29, - 112 + Fn ~ 112 1 

general, be positive in that region and may dominate it, 
(3.5,~7~) leading to instabilities, as will be demonstrated later. Also 

2Au note that from Eq. (3.5.16) 

q5,+,,2(duldq)n+,,2+q~-,,,(duldq),~,,, 
(Au)’ 

hi+ i/2 -%I,+ 1/z + Fn+ ~2) ‘I 
= -3N(l + O(Au)), (3520) 

- (4: - ,,2 - %n ~ 1/2 + FH ~ 1,~) where N is defined here to be 
2Au 

- msnNeyn - 1) (3.5.17b) 

and therefore we obtain a numerical relationship equivalent 
to Eq. (3.1.1) of GM, but this time for photon number 

(3.5.17c) density. If K(q) = 0 is set, then the relation becomes 

4, = $X(q2), 
- 

(3.5.17d) 

where Eq. (3.5.12) still applies and in the coefficients one 
must use an explicit form for F,, + 1,2 : - 

x [(l-a) FL+’ AuzO. (3.5.21) 

F n~1/2=(F:+Ff,dP. (3.5.18) This type of approach certainly removes the problem of 
the non-conservative scheme of Section 3.1, but it suffers 

This again may be shown to have stability problems similar from the low order instability due to the d$/dy term (see 

to those of the scheme (3.5. lo), using an equation equivalent Fig. 2). The oscillations can become much more severe 

to (3.5.14), 
1 .q T “-“--~‘r,----T -_-_ 

a+b+c,&b 
[( > 

du qn+1/2-qn-uz-3 1 
1.2: /) 1 
1.0: I’ ) 

4 dg” AU .8L I 

(4;: + 1,2 - 2qn + I/Z + Fn + I/J 
.s; 

I / 

.4 
du 

1 
1’ I 

.2+ 
1 

+dq. ( > 
- (4: - 1/z - 2qn - I/Z + Fn ~ ,,A t 

Au 
ow -__----’ ,I \, 

‘/ IT 
~, 

2; F! 
(3.5.19a) d&’ 4 

-. ?: II 
0- ( i’ 

and -Lo- 

a-b+c=3$($)n+&($)n 

-1.2 
\ :/ 

j i 
-1.4- 
-1.b /j’ 

-1.S (ill 
1 

-Z.O- I/ 
i 

-2.2-M “““‘I - ““Y “- - 
10-s 1o-4 1o-3 1 o-2 10-l IO0 10’ 102 lo3 

(3.5.19b) Y 

FIG. 2. Evolution curves for dJI/dy as a function of the optical depth 
Note here that if we ignore the non-linear terms in (3.5.19) p arameter y. Conservative scheme, non-Lagrangian treatment. 
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under appropriate circumstances. Note also the rather large 
excursions towards the positive value of the estimated 

d$ldy. 
To summarise here, it is clear that some improvement has 

been made in the model, but obviously it is still far from a 
satisfactory outcome. It is therefore necessary to consider 
further refinements before reliable results are obtained. 

3.6. Semi-Lagrangian Approach 

The oscillations in the estimated values of d$/dy indicate 
a problem related to that term in the model. 

The conservative scheme, developed in the previous sec- 
tion, considers differential segments of particle numbers or 
the “fluid” being transported in the dimensionless momen- 
tum space. This type of approach is referred to as Eulerian. 
In problems involving wave-type forms it may be advan- 
tageous to follow the motion of a “single particle of fluid” 
instead. This is known as the Lagrangian viewpoint [ 171. In 
Lugrangiun schemes a set of “particles” is followed during 
their evolution. This has the effect of distorting the grid and 
making it difficult for numerical integration. To avoid such 
problems a variation on the theme may be introduced by 
tracking where the “particles” came from at each time step 
at a fixed grid point, which means that the “particles” 
followed are changing from step to step. This technique 
is known as the semi-Lugrungian approach (see, e.g., 
Ref. [2]). In case of Eq. (2.0.1) it may, however, be best to 
use a combination of both approaches, each where it is best 
suited. To see this, let us write the left side of Eq. (2.0.1) in 
the form of a full derivative, 

(3.6.1) 

where 

c, = d$l&, 

and it is assumed that c, is either independent of y or varies 
very slowly with y. For our purpose, the expression (3.6.1) 
needs to be modified to become an equation for F = q2f, so 
that 

F-qdrlrtF+2!!kF=dE”+2~F~ 
ay dv aq dv dy dy ’ (3.6.2) 

where 

F’ = F( In q - c,~ y ). (3.6.3) 

The energy integral of the function F’ can then be calculated 
to be 

qF(ln q - c, y ) dq = e2CJ -’ 

and each term on the right-hand side of (3.6.2) contributes 
a term like the right-hand side of (3.6.4). Therefore, if the 
energy is to be conserved in the semi-Lagrangian stage of 
the integration, the function required is 

F*(ln q) = rcF(ln q-c, y), (3.6.5a) 

where 

K= jrn qF(ln q, Y) 4 srn qFUn q- C,Y, Y) 4 1 - I. (3.6.5b) 
0 0 

Note that Eq. (3.6.5) allows us to ignore the second term on 
the right side of (3.6.2), because it has been absorbed during 
the integration step of Eq. (3.6.5). 

Physically this can be interpreted very simply. As the 
photons are thermalised and the heating factor 4 increases, 
the space q needs to be resculed to keep the spectrum posi- 
tioned correctly relative to its mean value in q space and at 
the same time the energy integral must be conserved. The 
former requirement is satisfied using the transformation 

In q’ = In q - c, y (3.6.6) 

while the latter is achieved with the application of 
Eq. (3.6.5). We may now write a modified difference equa- 
tion approximation of Eq. (2.0.1) by setting d$/dy = 0 
in Eq. (3.5.9), except for one term and replacing 
(F :I - FL)/Ay with (Ff,” - F,*‘)/Ay, where 

F,* i = e ~ 2(4/4’) b’F( q;, y;) 

= F(qne - (&/dv) &, yi) (3.6.7) 

and, consequently, the overall scheme is like that of 
Lightman [ 141, except that all the references to the function 
F at time level i are replaced by F * i. Equations (3.5.17) may 
now be rewritten as 

2 4, - + ~ 1,2 29, ~ 112 FL 112 - 
2Au 

1 (3.6.8a) 

r 

(q~+1,2-2qn+,,2+Fn*+1,2) 

+ - (4;: ~ ,,2 - 2q, - 112 + C- 1,2) 

2Au 

- K(q,)(e4”- 1) (3.6.8b) 



264 GRANEK AND MCKELLAR 

+ d + 112 - ‘“;;+I/ + CT+ ~21, (3.6.8~) 

while d, remains as before. The sum of these coefficients now 
becomes 

(d+ 1/2 - %n+ 1/2 + C+ 1,2) 

- (9; ~ 1/z - 29, ~ I/Z + FL 1,2) 

AU 

(3.6.9a) 

and 

a-b+c=(Au)2 dq y”),{9:+l,2(z)“+,,2 

(3.6.9b) 

and, consequently, the scheme will be stable for all d+/dy, 
provided the numerator of Eq. (3.6.9a) is negative. In 
general, F is an increasing function of u for u < 1 and a 
decreasing function of u for u > 1, so that the scheme may 
become unstable when F is close to 1 due to the non-linear 
term. This problem does not go away if the non-linear term 
is expanded using Taylor series as in Lightman [ 141, 

(F; ‘)’ = F,* ‘F;+ ’ - (F,*i)2, (3.6.10) 

and the typical unstable behaviour is shown in Fig. 3. 
Lightman’s calculations did not suffer from this instability 
due to the fact that he started with very few photons in the 
low energy end of the spectrum, while the instability 
becomes important only when the equilibrium distribution 
is approached from “above,” i.e., when during thermalisa- 
tion too many photons appear in the low q region. To over- 
come this problem the non-linear term must be treated in a 
somewhat different fashion. That is, the coeffkients a, and 
c, must be set up, if possible, in such a way that when they 
are added together, the non-linear term disappears. One 
way of achieving this is by using the approximation 

= V’,*+ I 
F 

+F;,*pl) ‘+I 
-F,-I 

24 

F %F,* II+’ (3.6.11) 
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FIG. 3. Time evolution curves of the photon spectrum for the semi- 
Lagrangian conservative scheme but with the non-linear term treated using 
the scheme of Lightman [14], for the case of decay temperature To of 
1 KeV, massive neutrino mass mH = 1 MeV and electromagnetic decay 
branching ratio B= 10m3. Only Kompaneetz and double Compton terms 
included. Note the instability in the evolving spectrum. 

This then gives the final form of the difference scheme with 
coeffkients of (3.5.12) being 

2 
4, - ~ I,2 29, - 112 + 2C 

- 2Au 1 (3.6.12a) 

b,= f& 

(>[ 

2 

dqn - 

4, + ,,,W&)n + I/Z + qi- &W4), - 1/z 

(AuJ2 

+ (4;: + l/2 - &La + l/2) - (42 l/2 - 29, - l/2) 

2Au 1 

- W9J(eq” - 1) 

+ d+ 1/z - ;;;:1,2 + WJ 

(3.6.12b) 

(3.6.12~) 

and, for the stability equation, 

a+b+c= & (4;:+,,2-24n+~,2)-(4::-~,2-24n-~,2) 

( > 4 n AU 

(3.6.13a) 
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and 

‘. (3.6.13b) 

In practice, despite the fact that (3.6.13) is positive in some 
regions, the system is still stable. This is because the 
amplification factor G is allowed to exceed unity by a term 
of O(dy) and the system will still remain stable (see, e.g., 
Ref. [ 161) and this is in fact the case here for any local grid 
region in the spatial coordinate space. 

Let us now briefly return to the amplification factor equa- 
tion (35.13). Until now it was assumed that d = 0 (i.e., only 
the single Compton or Kompaneetz term was considered). 
If we now allow d > 0 then it is obvious from Eq. (3.513) 
that the amplification factor increases and the system 
becomes less stable. This means that under such circumstan- 
ces the c( = 1 model is much more likely to remain stable 
than the c( = i model and, in fact, the latter does suffer some 
difficulties resulting in very slow integration in the full 
model. Evolution curves for various parameters are given in 
Fig. 4 for the case corresponding to all collision types 
included and for the a = 1 model. 

At this stage we would like to make several observations. 
In Fig. 4, y is effectively a measure of time, such that the 
single Compton effect always becomes important for y 2 1, 
while the source/sink terms, because they are much weaker, 
do not become important until much later, say y z 5 in 
Fig. 4. This means that, up to y z 1, not a lot of changes are 
taking place as far as the diagnostic parameters t, T, H, I,, 
4, ASS? etc. are concerned (see Figs. 4aab, d-f); i.e., the 
behaviour of the system is the same as for a case of a non- 
expanding, fixed-temperature cavity, without any source/ 
sink terms. The only effect taking place for y < 1 is a rapid 
change in the spectrum F ( =q2f) see Fig. 4i. The main 
difference between the spectra for small y, in the case with 
source/sink terms and those without, is that there is always 
some small q ( w 10 p6 - 10 ~’ in Fig. 4i) where the spectrum 
quickly attains the Planck’s spectrum values due to the 
increasing strength of the source/sink terms with decreasing 
value of q). For y > 1, the Wien hump (the region around 
q = 1, where ,f has the Boltzmann’s distribution, f= 
exp( -q - 4)) is established, and because the source/sink 
terms for large q are negligible, the hump grows slowly as 
the particles drift in energy space from the small values at 
q - 10 5 to around q w 1. An interesting and noticeable 
feature of the spectrum evolution for y > 1 (in the case 
examined here, Fig. 4j) is that the Wien hump has practi- 
cally fixed boundaries; i.e., it is spread over the approximate 
region 10-l < y < 102. Also, because of the behaviour 
for small y, the spectrum can never become a true 
Bose-Einstein distribution, even if the values of 5 and {,,, 

are practically the same; i.e., the only equilibrium distribu- 
tion possible, is the Planck spectrum and all other spectra 
result due to premature decoupling of the system. In the 
general case, such spectrum consists of three parts: (i) the 
Planckian segment (q < lop4 in Fig. 4j); (ii) the Wien hump 
(420.1 in Fig. 4j); and (iii) the intermediate region that 
connects the regions (i) and (ii) [lo]. 

3.7. Stability, Consistency, and Convergence 

Before the results of the model are accepted it is necessary 
to ensure that it converges onto the required solution. This 
is done with the aid of the Lax’s equivalence theorem which 
states 

Given a properly posed initial-value problem and a finite-difference 
approximation to it that satisfies the consistency condition, stability 
is the necessary and sufficient condition for convergence [16]. 

This means that since the stability of the scheme (3.6.12) has 
already been established; it is only necessary to ensure that 
the scheme is consistent, i.e., that the change in the value of 
the function F goes to zero as dy -+ 0. Numerically this may 
be tested by repeating each iteration during the solving 
procedure, which should reduce the error in the calculated 
solution, and by running the model with initial conditions 
consisting of the steady state, in which case only truncation 
errors should be noticeable. 

Both of these tests were done and the results were consis- 
tent, producing a Planckian spectrum in B = 0 case, while 
the case with iterations repeated two and three times at each 
time step produced results that were almost completely 
identical to the single iteration case. The reason for this is 
that d$/dy is relatively small and, so if the step size is very 
small as well, the effect due to this variable’s error becomes 
negligible and it does not noticeably affect the results. 
Analytically, the above results mean that if 

and 

F n+ 1 = @jy) F” (3.7.la) 

then 

F II+1 -F” 

AY 
= AF”, (3.7.lb) 

as Ay + 0, (3.7.lc) 

where i is an identity operator. 
Before the discussion of the model is completed, several 

points should be made here. First, it is quite obvious from 
Eqs. (3.6.12)-(3.6.13) that this scheme, although stable in 
the von Neumann analysis sense, violates the truncation 
error requirements (see Ref. [ 17, Appendix A], also men- 
tioned briefly in Section 3.4) for sufficiently large values of q. 
This means that the scheme may suffer from round-off 
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FIG. 4. Evolution curves of representative parameters as a function of the optical depth parameter y for the final version of the model including the 
semi-Lagrangian and non-linear term modifications of Section 3.6 for the Kompaneetz bremsstrahlung and double Compton terms all included, model 
a = 1: (a) time, (b) the expansion scale parameter I, (c) d$/dy, (d) temperature, (e) assymptotic value of d, d,,, , (f) heating factor 4, (g) step size dy 
during integration, (h) Hubble parameter H, and (ik(j) a sequence of spectra at selected values of y (i) at small values of y, y < 1; (j) at much later time, 
y $1. The figures are reproduced from Ref. [6], where a more complete set for a = l/2 and a = 1 may be found. 
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errors in that region. At the same time it should be noted so that the change in internal energy dU per unit time is 
that in Fig. 4 the temperature curve briefly increases before given by 
dropping, and in a number of other curves small deviations 
are stronger in the corresponding region. This may almost 
certainly be attributed to the truncation error, which $T$+Sfg. (3.7.3) 

appears, under certain circumstances, in the high end of the 
photon spectrum in the form of very small and fast oscilla- 
tions about the zero value. 

For the isolated system discussed here dU/dt E 0, so 

It is quite easy to show that this temperature rise is a rearranging Eq. (3.7.3) leads to the expression 

purely numerical effect and not a physical one. The internal 
energy of the photon gas is given by4 dT TdS 

dt S dt’ 
(3.7.4) 

U= TS, (3.7.2) 

4 In the case discussed here, internal energy of electrons and protons is Now, the second law of thermodynamics requires that 
negligible. dS/dt 3 0, which implies that dT/dt 6 0, and, consequently, 
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the temperature should be monotonically decreasing or 
constant as a function of opacity, time, or expansion scale. 

In order to overcome this problem, the first-order 
derivative term contribution in Eq. (3.6.12) needs to be 
absorbed into the semi-Lagrangian term, to ensure that the 
truncation error remains small everywhere. This may well 
be possible, but in view of the overall accuracy of scheme 
(3.6.12) it appears that such a complication is not warranted 
at this stage. 

4. SUMMARY AND A COMMENT ON THE HARDWARE 

This article has dealt with the analysis of the Kompaneetz 
equation with sources and sinks. We have compared a num- 
ber of implicit differencing schemes in the attempt to solve 
the above equation. These include non-conservative, con- 
servative, and conservative semi-Lagrangian schemes. The 
non-conservative scheme exhibits a rather severe drift in the 
particle number (in the absence of sources and sinks) and 
consequently cannot be integrated due to this inconsistency. 
Higher order non-conservative schemes exhibit instabilities, 
particularly in the region where the spatial variable is small, 
and consequently were not useful. The second differencing 
scheme considered was a conservative scheme, similar to 
that used by Lightman [13314]. This scheme exhibits 
several problems not apparent in Lightman’s case, because 
his model describes a non-expanding medium and the phase 
space density function f -+ 1 everywhere initially, which is 
not true in our case. The latter problem was rectified by a 
modification of the difference expression for the non-linear 
term, while the former required the advective term (due to 
expansion) to be treated using the semi-Lagrangian 
approach. The final version of the differencing scheme was 
found to be: (1) consistent, when the pure Planck spectrum 
is used as the initial conditions, and (2) stable when each of 
the steps is iterated several times, and this led to identical 
results to within the rounding errors. This means that the 
scheme converges, and the limit is found to be the Planck 
spectrum, or the Bose-Einstein spectrum with vanishing 
chemical potential 5. 

In the future, a model of this type may be used to compute 
a constrained lit to the cosmological background radiation 
with distortions [IS, 223, if the data is confirmed and is good 
enough for such a purpose. At the same time some more 
attention may be given to the truncation problem men- 
tioned at the end of the previous section, as it occasionally 
results in slow integration in regions relatively far away, 
below the constraining curves given in GM. In particular, 
when the massive neutrinos have a mass close to the 1 MeV 
limit and the branching ratio is close to unity, the problem 
is generally most noticeable. This may be important if an 
attempt is made to lit distorted data. 

Finally, before we conclude, we would like to make 

several comments regarding the hardware and precision of 
the numeric calculations. 

The computation required for the model discussed here 
was done exclusively on Digital Equipment Corporation’s 
VAX series computers. The initial development of the model 
was in default precision on these machines, but because the 
photons injected into the background spectrum can be 
located over a large region of photon momenta, then it was 
necessary to extend this precision of calculations beyond 
this level. The default double precision mode on DEC’s 
machines unfortunately does not help because there is no 
change in the dynamic range of the floating arithmetic so 
that the G-FLOATING mode had to be selected. It should 
be pointed out that this extended precision does not make 
a significant difference to the computation results, but only 
allows extension of the range over which the spectrum may 
be computed from about q = 80 to a value of q exceeding 
600. This problem can be further overcome by modifying 
the code to extend it to the H-FLOATING mode which has 
a floating point range of about 10’5000, but requires twice 
the array storage capacity as the G-FLOATING mode, 
which has the dynamic range of approximately 10’300. It 
turns out that the machines developed over a decade ago, 
such as the VAX-l l/780, which is often used as a standard 
for evaluating scientific computing performance, lack part 
of the hardware of the machines of a more recent vintage 
such as the micro VAX II or the VAX-l l/8650. As a result 
the model developed in this section has much better runtime 
characteristics on the latter two machines than on a 
standard VAX-l l/780, where computing time increases by 
probably more than an order of magnitude. Since a typical 
run required to evaluate an entry in the tables of GM takes 
typically l-2 h on a VAX-l l/8650 (with a large amount of 
variation depending on the initial parameters), then it 
becomes clear that the model will not run in the extended 
precision in realistic time on the older type VAX computers. 
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